Comparing the Effect of Flaxseed and Fish Oils on Acute Ischemia-Reperfusion Injury in the Rat Kidney

Maryam Moghimian1, Seyed-Hosein Abtahi-Eivary2*, Najme Jajarmy3, Mahdi Karimi Shahri1, Javad Adabi4, Majid Shokoohi5

Abstract
Objectives: Polyunsaturated fatty acids (PUFAs) are useful in reducing the deleterious effects of ischemia-reperfusion (IR). This study was designed to compare the impacts of treatment with flaxseed oil (FLO), rich in linoleic and alpha-linolenic acids, and fish oil containing long PUFAs, as well as eicosapentaenoic and docosahexaenoic acids (DHAs), on IR injury in the rat kidney.

Materials and Methods: In this experimental study, 32 male Wistar rats were randomly divided into 4 groups (8 rats each) including Sham, IR, FLO, and fish oil (FO). Correspondingly, experimental groups were administered saline and flaxseed or FO at doses of 0.4 g/kg by gavage. After 4 weeks, the rats underwent right nephrectomy and 45-minute clamping of the left renal arteries followed by 24 hours reperfusion. Renal function was assessed by measuring the serum creatinine (Cr) and blood urea nitrogen (BUN) levels. The oxidative stress and serum aspartate aminotransferase (AST) activity were measured. Each kidney was sectioned into 2 equal parts. One part was used for pathological evaluations after hematoxylin-eosin staining and the other one was applied in assaying the malondialdehyde (MDA) level.

Results: Serum Cr and BUN levels, AST activity, and tissue MDA content increased in the IR group. Both FO and FLO decreased tissue MDA levels (P < 0.05 vs. IR), but could not lead to a significant reduction in the levels of the renal markers. In addition, histological damages which were increased following the IR were markedly reduced by these 2 oils.

Conclusions: Generally, FLO and FO may provide protection against IR-induced renal injury and oxidative stress. However, these effects were not significant between the 2 supplementations.

Keywords: Renal ischemia-reperfusion, Oxidative stress, Fish oil, Flaxseed oil

Introduction
Renal ischemia-reperfusion (IR) injury is the primary cause of acute kidney damage (1). Several mechanisms including disturbances in the cellular Ca\(^{2+}\) metabolism, high levels of free radicals, and production of toxic lipid metabolites were proposed to be responsible in this respect (2).

Supplementations with omega-3 fatty acids, especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which are the main (n-3) polyunsaturated fatty acid (PUFA) found in fish were found to have protective effects on IR-induced acute kidney failure (3).

Studies on the renal model of IR demonstrated that 4-week supplementation with EPA improved glomerular filtration rate (GFR) (4) while 8-day DHA supplementation decreased serum creatinine (Cr) level and histological damage (5) In addition, 2-week DHA + EPA treatment led to functional improvement, reduction in oxidative stress, and histological damages (6).

In addition to the above-mentioned long-chain fatty acids, alpha-linolenic acid (ALA) as an essential fatty acid has many useful effects. Zhao et al demonstrated that ALA ameliorates cardiovascular diseases by inhibiting vascular inflammation (7). Further, intake of ALA prevents coronary heart disease (8), and Finally, dietary ALA is associated with fewer coronary events (9). An animal study suggested that ALA has favorable effects on heart failure (10). Furthermore, the coexistence of ALA and lignans in plant oils might exert a better cardioprotective effect on the ALA (11). The cardioprotective activity of flaxseed oil (FLO) is widely accepted (12). Plants are alternative sources of omega-3 fatty acids. Moreover, the plant flaxseed is the richest source of the essential fatty acids, linoleic acid, omega 6, ALA, omega 3 PUFA, and the most widely available n-3 PUFA for the humans (13). Voss et al reported that long chain nonessential omega-3 PUFAs can be produced from their precursor, namely, ALA, in mammals (14).
Additionally, flaxseed contains antioxidants (15) that could decrease the effect of reactive oxygen species (ROS) and prevent lipid oxidation (16).

Although long-chain n-3 fatty acids are beneficial to mammals in preventing IR-induced damages, the evidence is not comparable with the flaxseed. There are many areas in the world that are far from the sea or oceans coasts. The ALA-containing oils such as FLO have advantages over the EPA- and DHA-containing oils mainly fish oil (FO), in that high intake of ALA is possible due to its low cost and high availability. Accordingly, this study aimed to determine the effect of FLO supplementation on renal IR injury and to compare it with FO.

Materials and Methods

Animals
Male Wistar rats (250-300 g) were obtained from Gonabad University of Medical Sciences (Gonabad, Iran) and were maintained in an air-conditioned animal room on a light/dark (12/12 hours) cycle at 21-23°C having free access to food and tap water.

Experimental Design
A total of 32 rats were randomly assigned into 4 groups of 8 rats: Sham, IR, FLO, and FO. The rats in the experimental, FLO, FO, and IR groups received 0.4 g/kg of FLO (Barij essence, Iran), FO (Omega Flex, International Agencies, Davie, FL, USA) containing EPA 180 mg and DHA 120 mg/g and normal saline through gavage for 4 weeks, respectively. Then, the rats were anesthetized using ketamine (100 mg/kg) and xylazine (10 mg/kg) and after right nephrectomy, the left renal pedicle was occluded for 45 minutes using a vascular clamp. The clamp was then released and reperfusion was established subsequently. The same protocol was followed for the sham group, but right nephrectomy was performed. Animals were maintained in an air-conditioned animal room on a light/dark (12/12 hours) cycle at 21-23°C having free access to food and tap water.

Measurement of Serum Parameters
Serum Cr and blood urea nitrogen (BUN) levels and aspartate aminotransferase (AST) activity were measured by commercial kits (Pars Azmoon, Iran).

Assay of MDA Levels in Renal Tissue
All the chemicals were prepared from the Sigma-Aldrich (Sigma, St. Louis, MO, USA). The MDA levels as an index of lipid peroxidation level in renal tissue were measured according to Ohkawa et al (17) in order to evaluate the oxidative stress status. Briefly, the powdered tissues were homogenized in 1.15 % KCl in a ratio of 10 % w/v and then the homogenates were centrifuged at 10 000 RPM for 10 minutes. The supernatant of each sample was then used for MDA evaluation. The reaction mixture containing 100 μL sample, 100 μL 8.1% sodium dodecyl sulfate (SDS), and 750 μL 20% acetic acid solution with a pH of 3.5 was adjusted by adding NaOH, 750 μL 0.8% solution of TBA, and finally 300 μL distilled water (DW) was heated at 95°C for 60 minutes. After cooling with tap and addition of 500 μL DW, an equal volume of n-butanol and pyridine mixture (15: 1, v/v) was added and the mixture was shaken vigorously. After centrifugation at 4000 rpm for 10 minutes, the absorbance of the upper layer was measured at 532 nm. The levels of MDA in tissues were calculated using its extinction coefficient of the MDA adduct (1.56×10^5 cm^-1 M^-1).

Measurement of Superoxide Dismutase and Glutathione Peroxidase Activity
Superoxide dismutase (SOD) and glutathione peroxidase activity (GPX) in serum were assayed in accordance with the protocols of the kits which was used (Randox, UK).

Histological Assessment
Three sections were prepared from each sample and stained with hematoxylin and eosin (H & E). Histological evaluation and grading of kidney damage included tubular cell necrosis, number of erythrocytes in glomerular capillaries, intracellular vacuolization, vascular congestion, and casts formation.

Sections were graded as follows: (1) <25% of tubules (0), (2) 25%–50% of tubules (minimal), (3) > 50% of tubules (no lesions) were involved. The total histopathological score, namely, the sum of all the scores regarding different damages were calculated.

Data Analysis
Kolmogorov–Smirnov test was implemented to determine if the data were normally distributed. Furthermore, the one-way ANOVA test was performed followed by Tukey post hoc test in order to compare the kidney function parameters and oxidative stress values. Moreover, the nonparametric tests including Kruskal-Wallis and Mann-Whitney tests were used to compare the total histopathological scores. In all comparisons, statistical significance levels were considered P < 0.05 and all data were presented as mean and standard error (M ± SE).

Results
Biochemical Assays
In this study, renal IR significantly increased (P < 0.05) serum Cr (1.54 ± 0.124 mg/dL) and BUN levels (53.307 ± 6.43 mg/dL) compared to the sham group (1.06 ± 0.32 & 23.07 ± 0.81, respectively). Although the 4-week treatment
with FLO and FO decreased serum Cr and BUN levels, these differences were not significant compared to the IR group, (Figure 1A-1B).

Additionally, AST activity in the serum of IR group was higher than that of the sham group ($P < 0.05$). There were no significant differences among the other groups in serum AST activities (Figure 2). As Figure 3 illustrates, IR in its related group significantly increased renal MDA contents compared to the Sham group ($690 \pm 189.868$ nmol/g of wet tissue, vs. $265 \pm 33.78$ nmol/g, $P < 0.05$). However, FLO and FO significantly reduced the MDA values in the corresponding groups compared to the IR group (FLO group, $315 \pm 65.357$ nmol/g & FO group, $270 \pm 23.944$ nmol/g vs. IR group, $690 \pm 135.97$ nmol/g, both $P < 0.05$). The decreasing effect of FLO on renal MDA content was not the same as that of the FO. However, the MDA value of the kidney tissue in the FLO group was not significantly different from that of the FO group. In addition, the level of SOD decreased but not significantly in all the other groups as compared to the sham group (Figure 4). There was no significant difference between the FLO and FO groups as compared to the IR group in this regard. Finally, there was no significant difference among the groups in the level of GPX (Figure 5).

**Evaluation of Renal Histology**

The results of histological studies are summarized in Table 1 and Figure 6. Sham group demonstrated no histological damages (Figure 6A). The number of erythrocytes decreased in the glomerular capillaries located in the cortex of the IR group. Further, epithelial cells in the proximal tubules were vacuolated and exfoliated into the lumens. FLO and FO reduced these changes except for vacuolization in the FLO and FO groups. In the medulla of the IR group (Figure 6B), vascular congestion and intra-tubular cast formation had higher scores compared to the FLO and FO groups (Figure 6C-6D, respectively). Furthermore, the total histopathological score significantly increased in the IR group compared to the sham group ($P < 0.05$). Although this score reduced in FLO and FO groups compared to the IR group (both $P < 0.05$), its amount was still significantly different from that of the sham group ($P < 0.05$), the obtained data are represented in Table 1.
Discussion

The results indicated that flaxseed and FOs could be beneficial in reducing IR-induced renal injury. It was found that the 4-week treatment with FLO and FO reduced histological and oxidative stress damages. However, these effects were not accompanied by significant attenuation in plasma levels of Cr and BUN and AST activity.

In this study, increases in Cr and BUN levels and histological damages after IR is probably related to a significant decrease in renal function. This effect is assumed to be due to an increase in oxidative stress found in the present study in which MDA content significantly increased as demonstrated by the other researchers (18-20). Moreover, SOD level, as an antioxidant, decreased in IR groups compared to the sham group. However, such a reduction was not significant.

Additionally, although the rats which received the FLO and FO supplements demonstrated reduced Cr and BUN levels following the renal IR, this decline was not statistically significant, which is probably related to the reperfusion period since in the study of Tucci Junior et al, Cr and BUN levels decreased seven days after the reperfusion (21). In addition, it was found that dietary supplementation with n-3 PUFAs, DHA, and EPA decreased IR-induced functional and histological injury in the hippocampus after 10 days (22). Another possible explanation for such an effect is the renal compensatory impact by which Cr and BUN levels could not rise to such a level in the IR group so that their decreases in oil-treated groups became significant (23).

Further, based on the results, FLO and FO in treated rats decreased the levels of MDA content. This is in agreement with the findings of the other studies (18,19). However, in line with our previous study, SOD and GPX levels in treated groups indicated no differences (24). This would be due to the histological improvement of the kidney as demonstrated by other studies in which omega-3 restored the antioxidant systems of the tissues (25,26). Several studies found that DHA had anti-inflammatory and immunosuppressive effects (27,28) and could decrease damages induced by tissue reperfusion in rats and dogs (5,18,29).

Histological evaluation revealed that IR-mediated renal injury resulted in significant tubular necrosis, cell vacuolization, decreased number of erythrocytes in the cortex glomerular capillaries, intra-tubular cast formation,

Table 1. Histopathological Scores

<table>
<thead>
<tr>
<th>Kidney Areas</th>
<th>Damage Marker</th>
<th>Histopathological Score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sham</td>
</tr>
<tr>
<td>Cortex</td>
<td>Reduced number of erythrocytes in glomerular capillaries</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Tubular cells necrosis</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Intratubular vacuolization</td>
<td>0</td>
</tr>
<tr>
<td>Medulla</td>
<td>Intra-tubular proteinaceous casts</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Vascular congestion</td>
<td>0</td>
</tr>
<tr>
<td>Total score</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Groups (n = 8): Sham; IR: Ischemia-reperfusion; FLO: Flaxseed oil; FO: Fish oil.

Sections were graded as follows: 0, minimal, or no lesions; (1) < 25% of tubules; (2) 25–50% of tubules; (3) > 50% of tubules were involved. Both Sham (*P) and IR (‡P) were significant at < 0.05.
and medullar congestion in the IR group, which is in line with the findings of the other studies (18,19). Based on the results of the other studies, pathological changes including the release of ROS (30) and apoptosis, as well as necrosis (31,32) are considered as the main results of IR-mediated injury of the kidney. Cellular ATP depletion, disruption in mitochondria function, inflammatory processes activation, and decreased sodium/calcium exchange were proposed as probable mechanisms of IR-induced injury.

A less histological injury which was observed in the FLO and FO-treated rats compared to the IR received rats, are possibly due to the decreased oxidative stress, functional improvement of mitochondria in maintaining the myocellular ATP levels, and therefore preventing the apoptosis (33-35).

The FLO in the FLO group could decrease the MDA level to the level similar to that of FO in the FO group but to a lesser extent. In this case, flax lignans in FLO could contribute to attenuated oxidative stress (36).

Furthermore, several studies found that high intake of ALA, which is the main fatty acid in FLO, prevents coronary heart disease (8,9,37,38), and may have favorable effects on heart failure (10). Moreover, in the current study, the corresponding rats were supplemented with 0.4 g/kg of both oils whereas based on molecular weights of these 2 fatty acids (ALA in FLO & EPA & DHA in FO), this concentration makes different molar levels of fatty acids in the corresponding groups, which partially explains the different protection effects. It is reasonable that the higher is the level of n-3 PUFAs in the body, the further would be the production of MDA as an oxidized product of n-3 PUFAs. Higher content of n-3 PUFAs in FLO may justify a higher level of MDA in the FLO group compared to the FO group.

Previous studies demonstrated that a considerable amount of ALA, about 0.7% in humans, in comparison with the only 0.1% of DHA, incorporates into adipose tissue. Additionally, partitioning the dietary ALA into the β-oxidation pathway of mitochondria in men is about 30%. These findings reveal that availability of ALA to the site of IR-induced injury might be less compared to the DHA received by the rats. Similar results were observed in women by increased availability of ALA for conversion to longer chain PUFA compared to men, due to their lower muscle mass up-taking ALA for β-oxidation (39).

There is a positive linear relationship between ALA ingestion and DHA cell content. Due to the common pathway for the conversion of linoleic acid (LA) and ALA into long-chain PUFAs (arachidonic acid & EPA/DHA, respectively), increases in LA content of diet may decrease the content of DHA. Since there are additional reactions involved in the synthesis of DHA from EPA, increases in synthesis of EPA from ALA would not normally result in sufficient DHA synthesis. In addition, based on previous studies, the overall efficiencies of conversion of ALA into EPA and DHA are only 0.2 and 0.05%, respectively. Due to the feedback inhibition regarding converting ALA into EPA and DHA by these 2 fatty acids, higher intake of EPA and DHA could inhibit the mentioned pathway. Totally, due to the restriction of ALA conversion into EPA, especially DHA, a diet lacking EPA and DHA would be sufficient to maintain the cellular requirement only when the demand for these 2 long PUFAs are not high (39).

**Conclusions**

Generally speaking, the results of the present study revealed that both FLO and FO provided protection against IR-induced renal injury and oxidative stress. However, these effects were not significant between the 2 supplantations.

**Conflict of Interests**

Authors have no conflict of interests.

**Ethical Issues**

All the experiments were performed in accordance with the institutional guidelines of the Research Ethics Committee of Gonabad University of Medical Sciences with the allocated code of 92.1145.9-2013.06.06. In addition, the guidelines of the National Ethics Committee of the Ministry of Health and Medical Education for the care and use of laboratory animals were observed.

**Financial Support**

Gonabad University of Medical Sciences supported the study.

**References**


