Introduction
Placenta is the maternofetal contact zone, provided by normal membranes and endometrium, for which the intrauterine fetal life depends on. Regarding the importance of placenta in embryonic period, this study aims at investigating the histopathological changes of placenta in newborns with intrauterine growth retardation (IUGR).

Materials and Methods
This study was performed on two groups (control and experimental) of pregnant women with IUGR fetus in the Histological Department of Medical School of Azad University, Tabriz. In the experimental group, 30 samples of IUGR placentas were examined. The samples were first fixed in formalin, embedded in paraffinized mold, and cut into 5 μm sections. After that, the samples were prepared for staining with Hematoxylin and Eosin (H&E), trichrome, and PAS techniques.

Results: Findings showed the increase of syncytial knots and fibrinoid, the presence of villous fibrosis, and decrease of glycogen deposit in the experimental group. In addition, statistical investigations suggested that placental and fetal weights in the experimental group were significantly lower than control group ($P<0.05$).

Conclusion: The results obtained from this study showed that fetal placental and birth weights were lower than control group. Pathological results showed increase of syncytial knots and fibrinoid in the experimental group in comparison to control group.

Keywords: Fetal growth retardation, Fibrosis, Gestational age, Placenta

Histological Study of the Placenta in Neonates With Intrauterine Growth Retardation
Hossein Mohammad Alizadeh Fard¹, Fatemehe Afshari¹*, Zahra Ghatre Samani²

Abstract
Objective: Placenta is the maternofetal contact zone, provided by normal membranes and endometrium, for which the intrauterine fetal life depends on. Regarding the importance of placenta in embryonic period, this study aims at investigating the histopathological changes of placenta in newborns with intrauterine growth retardation (IUGR).

Materials and Methods: This study was performed on two groups (control and experimental) of pregnant women with IUGR fetus in the Histological Department of Medical School of Azad University, Tabriz. In the experimental group, 30 samples of IUGR placentas were examined. The samples were first fixed in formalin, embedded in paraffinized mold, and cut into 5 μm sections. After that, the samples were prepared for staining with Hematoxylin and Eosin (H&E), trichrome, and PAS techniques.

Results: Findings showed the increase of syncytial knots and fibrinoid, the presence of villous fibrosis, and decrease of glycogen deposit in the experimental group. In addition, statistical investigations suggested that placental and fetal weights in the experimental group were significantly lower than control group ($P<0.05$).

Conclusion: The results obtained from this study showed that fetal placental and birth weights were lower than control group. Pathological results showed increase of syncytial knots and fibrinoid in the experimental group in comparison to control group.

Keywords: Fetal growth retardation, Fibrosis, Gestational age, Placenta
evaluation of the samples using SPSS.

Results
The results obtained from this study were evaluated statistically and histopathologically. Histochemical analysis showed that H&E reactivity for syncytial knot was much stronger in experimental group (Figures 1A and 1B) and analysis also showed decrease of PAS and trichrom reaction intensity in comparison with control group (Figure 1C-F). There is not any significant difference in the first and fifth-minute APGAR score between the two groups (Figures 2 and 3), but birth weight and placental weight in control group was significantly higher than experimental group (Figures 4 and 5).

Statistical Results
The Assessment of the First APGAR
There is not any significant difference in the 1st-minute APGAR score between the two groups (Figure 2).

The Assessment of the Fifth-Minute APGAR
There is not any significant difference in the 5th-minute APGAR score between the two groups ($P_{5}=0.335$; Figure 3).

Birth Weight
Birth weight in control group was significantly higher than that of experimental group ($P<0.001$) (Figure 4).

Placental Weight
Placental weight in control group was significantly higher than that of experimental group ($P<0.001$).

Histopathological Results
The results obtained from this study showed increase of syncytial knots and fibrinoid, the presence of villous fibrosis and decrease of glycogen deposit in the experimental group. In addition, statistical investigations suggested that placental and fetal weights in the experimental group were significantly lower than control group.

Discussion
Placenta is a structure that allows the transfer of nutrients required for fetal growth, and also the removal of toxins and harmful substances from the fetus. In fact, this structure significantly improves normal growth of fetus during pregnancy (6).

Having nutritious diet and avoiding harmful substances such as alcohol, drugs and tobacco smoke improves the chance of normal fetal growth.

In some rare cases, the placenta may malfunction by inadequate supply of nutrients to the fetus and thus inhibits its development, leading to devastating and irrecoverable effects on fetal growth (7). Fetal growth restriction (FGR) contributes not only to neonatal morbidity and mortality but also to major psychiatric sequelae as depression and suicide. FGR affects 5%-10% of pregnancies (8).

In a series of stereological studies on formalin-fixed placental samples, trichrome-stained tissue sections were selected randomly. Using stereological methods, the exchange surface areas of their peripheral villi and capillaries were estimated; in addition, IUGR was associated with reduced surface areas of villi and this was the principal factor leading to the reduction of layers and membranes in these placentas (9,10).

In our pathological study on investigated placentas, the frequency of intervillous fibrin deposition was higher in IUGR neonates than control group. The pathologic study on the experimental group showed greater frequency of

Figure 1. (A) The photomicrograph of placenta in the control group, H&E staining, 400X. (B) The photomicrograph of placenta in the experimental group, H&E staining. Pay attention to increase of syncytial knot, 400X. (C) The photomicrograph of placenta in the control group, PAS staining. Pay attention to glycogen deposition, 400X. (D) The photomicrograph of placenta in the experimental group, PAS staining. Pay attention to decrease of PAS reaction intensity in comparison to control group, 400X. (E) The photomicrograph of placenta in the control group, trichrome staining, 400X. (F) The photomicrograph of placenta the experimental group, trichrome staining. Pay attention to decrease of trichrome reaction intensity in comparison to control group, 400X.
syncytial knotting than control group. Results from some studies indicated increased number of syncytial knots in placentas of IUGR fetuses (11,12).

Findings of Sinclair showed that placental weight and its capacity for transferring metabolites increased linearly in order to compensate the fetus’s need when placental/fetal growth ratio was low (13).

Salafia et al investigated placental pathology of IUGR neonates and concluded that placentas of IUGR infants were characterized by decreased fetal-placental weight ratio and placental weight in comparison with placenta of infants with normal weight (14). Their findings supported those of our study.

Consistent with our findings, Davies et al observed that IUGR placentas were smaller in weight, volume and area compared to normal neonates; in addition, marginal insertion of cord was a significant finding in the placentas of IUGR fetuses (15).

Afshari et al in a study showed that maternal chronic diseases like diabetes are associated with increased formation of syncytial knots and increased villous fibrosis (16). The results indicated that placenta of the IUGR group was smaller in comparison to control group. Although some studies have shown infarction, thrombosis, ischemia, avascular villi, increased placental membranes thickness and intervillous fibrosis in IUGR (17,18), certain previous researches on IUGR have not demonstrated obvious differentiation between constitutionally and pathologically small fetuses (19). Also some studies reported pathological changes including: fibrin deposition, fibrinoid necrosis, infarction, intervillous chronic villitis, placental intravascular thrombi and villous edema in the placenta of experimental group (20,21). Another study showed that each of the placental findings related to fetal circulatory disorders was more common in IUGR than control group (22).

The findings of the current study demonstrate increase of syncytial knots and fibrinoid, presence of villous fibrosis and decreased level of glycogen deposition in the experimental group. In addition, statistical investigations suggested that placental and fetal weights in the experimental group were significantly lower than control group.

Ethical issues
The ethical issue of this research work was approved by Tabriz Islamic Azad University.

Conflict of interests
We declare that we have no conflict of interests.

Financial support
None.
Acknowledgments
This research was done in Faculty of Medicine, Islamic Azad University, Tabriz in the Histology Department. We are grateful to the staff for their help and support. The authors would like to thank Tabriz Branch Islamic Azad University for financial support of this research, which is based on a research project contract.

References