Morphometric Assessment of Cerebellum in Sudanese Population Using MRI

Hajer Alriaħ1,3, Samih Kajoak2, Hamid Osman1,3, Nahlaa Faizo2, Alaa Ahmed3, Caroline. E. Ayad1

Abstract
Objectives: Evaluating the influence of gender and age on cerebellum is significant for pathophysiological studies of degenerative brain disorders. This study aimed to evaluate the growth rate of the cerebellum in the normal brain in Sudanese population.

Materials and Methods: This cross-sectional descriptive study was performed at Modern Medical Center, Alia Specialist Hospital and Wad Medani Modern Medical Center, Sudan from 2017 to 2019. The data of 100 normal individuals with an age range of 3 months to 80 years old (males: 42%) were evaluated. A magnetic resonance imaging (MRI) was performed for all participants after applying the standard cerebellum protocol. Individuals with anomalies or abnormalities that may affect the posterior fossa were excluded. Measurement of all regions was performed in the screen monitor of MRI machine and statistically analyzed using SPSS Software version 16.

Results: The mean of the right hemisphere width, right hemisphere length, left hemisphere width, left hemisphere length, maximum hemisphere width, maximum hemisphere length, anteroposterior width, and anteroposterior length was 4.38, 4.88, 4.46, 4.42, 9.73, 6.42, 4.88, and 3.54, respectively, implying that the measurement variability was important.

Conclusions: There was s statistically significant correlation between cerebellum measurement with gender in left hemisphere width and maximum hemisphere width ($P_{0.05} = 0.07$, respectively). Also, there was a significant age-related reduction in left hemisphere width and length ($P_{0.001} = 0.001$ and $P_{0.05} = 0.05$, respectively).

Keywords: Cerebellum, MRI, Sudanese

Introduction
Cerebellum is one of the most vital structures of the hindbrain, situated in the posterior fossa of the cranium. The motor regulation and learning plays a crucial role, and it provides higher emotion and cognition functions. It grows over a longer period, which is one of the first brain regions to start to differentiate, but one of the last to mature (1, 2).

Some research raised questions as to whether the developmental curves between females and males are different. Studies have indicated that the brain continues to develop from childhood to maturity, with the peaks between the ages of 10 and 13 in both sexes (3).

Human brain aging is a differential process where in some regions there is a pronounced decline with relative security in others (4, 5). While this concern is shown in the cerebral cortex, it is not clear if it could be expanded to the posterior fossa structures.

Many areas tend to be more susceptible to age-related declines within the cerebellum than others. The differential aging of the cerebellar vermis involves lobules six and seven, and to some extent lobules nine to ten, but not the anterior cerebellar vermis (6, 7). Histology and computed tomography studies have documented significant loss of volume in the anterior vermis (8,9). Significant shrinkage of the posterior vermis was observed (7, 6) in magnetic resonance imaging (MRI) studies. The hemispheres also demonstrated age shrinkage (10).

In several studies, differences between males and females in gross cerebellar neuroanatomy have been observed. Males had larger cerebellar regions compared to females, although those studies did not systematically rule out the possibility that these variations may constitute gender differences of body size (7, 11-14).

Regarding the posterior fossa structures, the number of in vivo studies is limited and there is a need for normative evidence on the cerebellum. Volumetric studies are time consuming; linear measurements can be made easily without additional hardware or software. The literature includes many studies in which brain anatomical structures are quantitively measured in volume, width, and length (4, 14).

In the current prospective study, the authors investigated the variation in the size of cerebellum in different age and gender of Sudanese population. Different regions in cerebellum in axial and sagittal plane were assessed.
The manuscript discussed the role of MRI in cerebellum measurement. It showed regional gender gap and age-related atrophy in cerebellum.

The study acts as baseline for brain volumetric regarding gender and age.

The findings revealed that all mean measurements of cerebellar lengths and widths were higher in males than in females, but this difference was not statistically significant ($P>0.05$).

Materials and Methods

This cross-sectional descriptive analysis was conducted from 2017 to 2019 in Sudan at Modern Medical Center Alia Specialist Hospital and Wad Medani Modern Medical Center.

Samples

A data of total 150 individuals were evaluated in the current study. Fifty participants with history of clinical or MRI anomalies that affect the posterior fossa were removed. Finally, 100 healthy participants (age range: 3 months old to 80 years old) were included. Also, 42% of patients were males. All included participants were scanned using MRI of 1.5 and 0.35 Tesla (Toshiba Elan 1.5 Tesla with 63 cm aperture and Siemens Magnetom C1 0.35 Tesla) after applying the standard cerebellum protocol. Participants were selected from regions near MRI machines in Sudan. All demographic data were recorded using special designed sheet.

Technique of Measurement

Two experienced radiologists contributed to this study by making manual measured for eight 2D parameters of cerebellum. On axial plane measurement made for the following: width and length of right cerebellum hemisphere, width and length of left cerebellum hemisphere, and maximum width and length of cerebellum hemisphere. Also, measurement of the maximum width and length diameter of cerebellum on mid-sagittal plane was performed as described by Figueira et al. (8). The age and gender of the patients were registered in the designed data collection sheet.

The Statistical Package for Social Sciences (SPSS version 16) was used for data analysis. Ethical approval was obtained from the centers (bioethical committee) that participated in this study before data collection phase.

Examination Technique Used in Measuring Cerebellum

The most regular MRI scan are T1-weighted and T2-weighted images. T1-weighted images are achieved by using both short TE and TR. T1 of tissue primarily determined the contrast and brightness of image T1 characterized by dark CSF, while T2 characterized by bright CSF.

The measurements were done in slice as follow axial T2 FSE, sagittal T2 is best visualize the cerebellum and can be measured accurately.

Axial Cerebellum Measurement Technique

First measurement was taken in axial T2 FSE in region of interest for the cerebellum at the inner borders. The cursor was positioned at the wider point in inner border of left side of cerebellum, and it was traced to another symmetrical right border of cerebellum. Then, the reading was done, and this measurement was called maximum cerebellum width at axial image. Next, the cursor was positioned from the midline and upper point and traced into lower bottom end in another symmetrical side, which was passed at midline of cerebellum and the reading was done; this was called maximum cerebellum length at axial image (3, 15, 16).

Axial Measurement of the Cerebellum for Each Hemispheres

First measurement was taken in axial T2 FSE in region of interest in the cerebellum at the inner border of cerebellum. The cursor was positioned at the middle of the right hemisphere, then traced till it reached the lower bottom end. Then the reading was done, which was called RT hemisphere length of cerebellum at axial image. Next, the cursor was transferred to the second side in the left hemisphere and the same procedure was performed to obtain LT cerebellum length hemisphere at axial image.

Then, the cursor was transferred to inner border of RT hemisphere at the middle of left surface and wider area and it was drawn till it reached the midline of cerebellum; this reading was called RT hemisphere width of cerebellum at axial image. After that, the cursor was turned at the more point wider in inner border of RT surface of the left side of cerebellum; then it was drawn until midline and the measurement was taken, which was called LT hemisphere width of cerebellum at axial image (3, 15).

Sagittal Cerebellum

The image was selected where the brain stem, including the medulla oblongata and pons, appeared clearly. Then, the cursor was positioned at the most upper point and drawn till it reached the lower point in another side; this measuring was called cerebellum height at sagittal or crino caudally reading of cerebellum at sagittal image. Next, the cursor was positioned in a more wider area at RT and drawn to the symmetrical opposite side, which was called the width of cerebellum at sagittal (15, 16).

Table 1 shows the frequency and percentage of age among participants. According to the results, the age group of 1-20 years had the higher frequency (29%). Table 2 shows distribution by gender in this study.

Figure 1 shows the measurement of right and left hemisphere length and width and anterior posterior length and width of hemisphere, as well as maximum...
hémisphère longueur et largeur parmi les échantillons.

Comme le Tableau 3 montre, il y a eu une corrélation significative entre l’âge et la largeur et la longueur de l’hémisphère gauche et droite (P=0.001 et P=0.05, respectivement).

Figure 2 montre la corrélation de mesure du cerveau entre les femmes et les hommes. La mesure maximale a été notée chez les femmes pour la largeur maximale d’hémisphère.

Discussion
Pour comprendre les changements pathologiques, la variabilité des structures neuroanatomiques normales est cruciale. Concernant les structures du bassin postérieur, le nombre d’études in vivo est limité et des données prescriptives supplémentaires sont requises.

Les études volumétriques sont consommatrices de temps pour une tâche régulière ; la vitesse et la mesure du volume et de l’aire sont réalisables uniquement par logiciel MRI à moins de matériel ou logiciel supplémentaire, comme c’était le cas dans cette étude. Il y a plusieurs études dans lesquelles la longueur, la largeur, et le volume des structures anatomo-cérébrales ont été quantifiés.

L’évidence sur l’influence de l’âge sur le cervelet est essentielle, non seulement pour expliquer l’âge normal, mais aussi pour un examen clinique. L’étude prospective évaluait deux probables facteurs de déviation de structures anatomo-cérébrales régionales : l’âge et le sexe. Les fréquences et pourcentages de l’âge et du sexe étaient présentées dans les Tableaux 1 et 2. En utilisant un simple diamètre linéaire MRI, les mesures étaient obtenues sur les plans axiaux et sagittaux (Figure 1). Nos résultats ont montré que l’âge n’a pas eu de réduction significative sur les mesures de hémisphères cérébelleux ; une réduction significative a été observée seulement pour la largeur et la longueur de l’hémisphère cérébelleux gauche (P=0.001 et P=0.05, respectivement) (Tableau 3). Les études précédentes justifient que les résultats histologiques concernant l’âge et les hémisphères cérébelleux démontrent une atrophie générale, telle que le vieillissement entraîne une perte de Purkinje cells qui est répartie de manière égale sur les lobes vermis et les hémisphères cérébelleux (11). Par conséquent, nos résultats confirment et étiquettent les antécédents que le cervelet est age-related (12), bien que sa perte de volume soit moindre que celle du cerveau. Pour certains sujets, l’impact de l’âge sur le cervelet était relativement faible dans les études antérieures (15). Certaines régions sont plus susceptibles de présente une perte de Purkinje cells due à l’âge que d’autres dans le cervelet. Les études volumétriques ont des résultats hétérogènes (17). Bien que certains auteurs ont montré une perte de volume de cérébelleux et vermis égale (10), d’autres ont montré que les hémisphères sont moins affectés (15). Nos résultats trouvent que les hémisphères, particulièrement le hémisphère gauche, apparaissent être plus affectés
by age than other cerebellum regions. This discrepancy might be attributed to the methodological variations among the studies, particularly the concept of regions in the cerebellum. Other potential reasons for inconsistency of cerebellar volumetry are ethnic or social disparities in some samples (10). Such differences are difficult to be monitored, and vast meta-analysis studies are needed.

Gross cerebellar neuroanatomical sex variation has been noted in several studies. Males in certain studies had wider hemispheres of brain, cerebellar vermis, anterior vermis, as well as ventral pons (16, 18) in comparison to females. Consistent with overall larger brain size (13, 14, 19), our findings in showed the relation between the cerebellum measurements and gender, which positive propagation in men than women (Figure 2). The disparity among genders is substantial in some cerebellum regions such as left hemisphere length and maximum hemisphere width ($P=0.05$ and $P=0.07$, respectively). Some researchers hypothesized that cerebellar size of sexual dimorphism may be attributed to the impact of sex hormones (19, 14, 20). Escalona et al (13) revealed that females have slightly smaller volume of cerebellar than males, but showed no aging impact on cerebellar volume in both genders. Another study demonstrated that the reduction of cerebellum volume in females rather than males is due to more reduction of white matter volume in females; a major reduction of the cerebellar vermis in males after the age of 70 years was also documented (21).

Conclusions
Our findings indicated regional gender gap and age-related atrophy in cerebellum. Therefore, no age-related differences were reported in the measurements of cerebellum. The results showed that all mean measurements of cerebellar lengths and widths were higher in males than in females, though they were not significant ($P>0.05$), except in left hemisphere length and maximum hemisphere width ($P<0.05$). Factor inherited may describe why certain regions are more susceptible than some others.

Our findings offer a valuable addition to the normative cerebellar anatomy database, in that they endorse the idea of cerebellum differential aging.

More studies are required in this area to monitor change in brain for both genders. Also, studies with larger sample sizes and different participants are needed.

The main limitations of current study included its small sample size and limited MRI machines, as there were areas far from Sudan, which were not included in the current study.

Authors’ Contribution
First, third and six author planned the research and analyzed the results. First second and fifth author collect the data. Third author submit the manuscript as well as reviewing the paper.

Conflict of Interests
Authors have no conflict of interests.

Ethical Issues
The data was collected after obtaining the ethical approval from Gezira Center for diagnostic radiology (Ethical approval No. SUD 172/2019).

Financial Support
This manuscript was not funded by any institute or external body.

Acknowledgments
The authors would like to thank all radiographers and radiologists who contributed to this work at any phase. We also thank Dr. Ibrahim Almahi who facilitated the ethical approval process.

References
4. Yucel K, Hakyemez B, Parlak M, Oygucu IH. Morphometry

Copyright © 2021 The Author(s); This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.